

> WA | QLD | NSW | VIC

## Check Round Pool

Check largest diameter round pool, as that will result in the largest tensile force in the wall. Round Pools do not have any support frames

## Design Data

Water Depth $=1.18 \mathrm{~m} \quad$ Pool Radius $=5.5 \mathrm{~m} \quad$ Pool Wall Thickness $(\mathrm{t})=0.4 \mathrm{~mm}$

## Calculations

$\mathrm{F}=$ Circumferential Force $\quad \mathrm{P}=$ Internal Pressure $\quad \mathrm{O}_{\theta=\text { hoop stress }} \quad \mathrm{r}=$ radius
I = axial length of cylinder
$\sigma_{\theta}=F /(t \times I) \quad \sigma_{\theta}=(P \times r) / t \quad T=F / l$
$\sigma_{\theta}=F /(t \times I)=(P \times r) / t \quad \ldots \quad F / I=P \times r=T$

Water pressure $=9.81 \times 1.18=11.58 \mathrm{kN} / \mathrm{m} \quad$. . average pressure $=9.81 \mathrm{kN} / \mathrm{m}^{2}$

## Tension in Wall

$\mathrm{T}^{*}=9.81 \times 5.5=54 \mathrm{kN}$

## Wall Capacity

Pool wall is grade 300 steel

$$
\Theta \mathrm{N}_{\mathrm{T}}=0.9 \times 0.4 \times 1.18 \times 300=127.4 \mathrm{kN} \quad \text {. . Accept }
$$

## Check Join in Wall

Pool Wall Fixed by 62 M6 Bolts, 2 rows equally spaced down pool wall
$\Theta V_{b}=0.6 \times C \times d_{f} \times t \times f_{u}$

$$
=0.6 \times 3 \times 6 \times 0.4 \times 430=1.86 \mathrm{kN}
$$

. . Pool wall capacity $=1.86 \times 62=115.17 \mathrm{kN}$. . Accept

For Same reason either end of rain drop pool \& oval pool do not need frames

## Check Oval / Raindrop Pool Frames

## Check Shallow End Frame

Check largest \& smallest width tanks. All other widths of support frame will be considered acceptable. Pool Widths vary from 2.85 m (min) to 5.5 m (max)

## Design Data

Water Depth $=1.18 \mathrm{~m} \quad$ Uprights $-75 \times 3$ SHS

## Calculations

Hydrostatic Pressure $=0 \mathrm{kN} / \mathrm{m}$ (at the top of the wall)

$$
=9.81 \mathrm{kN} / \mathrm{m} \times 1.18 \mathrm{~m}=11.58 \mathrm{kN} / \mathrm{m} \text { (at the base of the wall) }
$$

Load on Base Channel $=0.075 \times 1.18 \times 9.81=0.87 \mathrm{kN} / \mathrm{m}$

Import Frame into "Space Gass" software (See Next page for Results)

## Results

Pool Deflection $-16.67 \mathrm{~mm} \times 1.18=19.67 \mathrm{~mm}$ outwards ( 5.5 m wide frame) $-30.97 \mathrm{~mm} \times 1.18=36.54 \mathrm{~mm}$ outwards ( 2.85 wide frame)

Although there is no deflection criteria for a structure of this type calculation have been done as a guide only. It should be noted that the post is weld at 88 degrees to the base as such after hydrostatic pressure the resultant lateral displacement is 4 mm inwards ( 2.85 wide unit) or 22 mm outwards ( 5.5 m wide unit) . This is deemed acceptable

Bending moment on the uprights
$\mathrm{M}^{*}=2.69 \mathrm{kN} . \mathrm{m} / \mathrm{m} \times 1.18=3.17 \mathrm{kN} . \mathrm{m}$
$\Theta M_{b}=9.10 \mathrm{kN} . \mathrm{m} \quad 75 \times 3 \mathrm{SHS}$ grade 450
Moment @ bolted connection $=2.18 \mathrm{kN} . \mathrm{m} / \mathrm{m} \times 1.18=2.57 \mathrm{kN} . \mathrm{m}$

Leaver arm (spacing b/w bolts) $=250 \mathrm{~mm}$

Bolt Shear capacity $=15.1 \mathrm{kN}$

$$
\begin{aligned}
\Theta V_{b} & =0.6 \times C \times d_{f} \times t \times f_{u} \\
& =0.6 \times 3 \times 12 \times 2.9 \times 430=26.94 \mathrm{kN}
\end{aligned}
$$

SPACE GASS RESULTS shallow frame 2.85 m wide


## SPACE GASS 11.06 - LOVE \& ASSOCIATES



[^0]SPACE GASS RESULTS shallow frame 5.50 m wide


[^1]
## Check Oval / Raindrop Pool Frames

## Check Deep End Frame

Check largest \& smallest width tanks. All other widths of support frame will be considered acceptable. Pool Widths vary from 2.85 m (min) to 4.66 m (max)

## Design Data

Water Depth $=1.78 \mathrm{~m} \quad$ Uprights $-75 \times 3$ SHS

## Calculations

Hydrostatic Pressure $=0 \mathrm{kN} / \mathrm{m}$ (at the top of the wall)

$$
\begin{aligned}
& =9.81 \mathrm{kN} / \mathrm{m} \times 1.18 \mathrm{~m}=11.58 \mathrm{kN} / \mathrm{m} \text { (at top of } 45 \text { degree bend in wall) } \\
& =9.81 \mathrm{kN} / \mathrm{m} \times 1.78 \mathrm{~m}=17.46 \mathrm{kN} / \mathrm{m} \text { (at base of } 45 \text { degree bend in wall) }
\end{aligned}
$$

Lateral Earth Pressure $=0.33 \times 17.5 \times 0.6=3.47 \mathrm{kN} / \mathrm{m}$ (at base of 45 degree bend in wall

Load on Base Channel $=0.075 \times 1.18 \times 9.81=0.87 \mathrm{kN} / \mathrm{m}$

Import Frame into "Space Gass" software (See Next page for Results)

## Results

Pool Deflection $-10.11 \mathrm{~mm} \times 1.18=11.93 \mathrm{~mm}$ outwards ( 4.66 m wide frame)

- $9.49 \mathrm{~mm} \times 1.18=11.20 \mathrm{~mm}$ outwards ( 2.85 wide frame)

This is deemed acceptable
Bending moment on the uprights
$\mathrm{M}^{*}=2.69 \mathrm{kN} . \mathrm{m} / \mathrm{m} \times 1.18=3.17 \mathrm{kN} . \mathrm{m}$
$\Theta \mathrm{M}_{\mathrm{b}}=9.10 \mathrm{kN} . \mathrm{m} \quad 75 \times 3 \mathrm{SHS}$ grade 450

Moment @ bolted connection $=0.8 \mathrm{kN} . \mathrm{m} / \mathrm{m} \times 1.18=0.94 \mathrm{kN} . \mathrm{m}$

Leaver arm (spacing b/w bolts) $=250 \mathrm{~mm}$
Bolt Shear capacity $=15.1 \mathrm{kN}$

```
ӨV
    = 0.6 x 3 < 12 < 2.9 x 430 = 26.94 kN
```

$15.1 \times 0.25=3.78 \mathrm{kN} . \mathrm{m}>0.94 \mathrm{kN} . \mathrm{m}$. . Accept

SPACE GASS RESULTS deep frame 2.85 m wide

| SPACE GASS 11.06 - LOVE \& ASSOCIATES |  | 13 Jan 2017, 11:30 am |
| :---: | :---: | :---: |
| Load ceses: <br> $\square 1$ |  |  |
|  |  |  |
|  | Materials: <br> 1 STEEL. | Sections: <br> 目 $15 \times 3 \mathrm{SHS}$ <br> 日2 Section 2 |
| Job: Z: StructerreliJob ...1 100653 - DRICLAD MASTE Units - Len: m, Sec: mm, Mat: MPa, Dens; T/m^3, Ter Scales - Frame: 1:45, Load: None, Disp; 16.78467, M | DOCUMENTSishallow 2850 wide Celsius, Foros: kN, Mom: kNm, Mass: ant; None, Shear: None, Axial: None, | 5s: MPa |



## SPACE GASS RESULTS deep frame 4.57 wide



## Check Footing

Largest Reaction from "Space Gass" $=2.22 \mathrm{kN}$

Footing Size $=250 \mathrm{~mm}$ Squared

Footing capacity with 80kPa bearing $=5 \mathrm{kN}$.. Accept

## Check in Ground Mass Retaining Wall

## Design Data

Retaining Wall Height - 1320mm

Assumed Soil Conditions
Ka-0.42, $\quad \gamma=18.5 \mathrm{kN} / \mathrm{m}^{2}$, No pour water pressure, No surcharge load

## Calculations

Overturning Moment due to Lateral Earth Pressure
$M_{\text {overturning }}=1 / 6 \times 0.42 \times 18.5 \times 1.32^{3}=2.98 \mathrm{kN} . \mathrm{m}$
$M_{\text {resist }}=20 \times 0.45 \times 1.32 \times 0.45 / 2=2.71 \mathrm{kN} . \mathrm{m}$
Steel Frame will provide some resistance to overturning moment. As the difference between the overturning moment and the resisting moment are minor it is assumed that the capacity of the frame will be enough to account for the minor difference.

## Check Square End Frame

## Design Data

Water Depth $=1.18 \mathrm{~m} \quad$ Uprights $-75 \times 3$ SHS

## Calculations

Hydrostatic Pressure $=0 \mathrm{kN} / \mathrm{m}$ (at the top of the wall)

$$
=9.81 \mathrm{kN} / \mathrm{m} \times 1.18 \mathrm{~m}=11.58 \mathrm{kN} / \mathrm{m} \text { (at the base of the wall) }
$$

Load on Base Channel $=0.075 \times 1.18 \times 9.81=0.87 \mathrm{kN} / \mathrm{m}$
Import into "SpacGass"

## Check Pressure Pad

Resistance to up lift $=0.6 \times 0.3 \times 1.180 \times 10=2.12 \mathrm{kN}<2.95 \mathrm{kN}$. . remaining load exerts onto Channel sections
2.95-2.12=0.83 kN @ 590 spacing $=1.41 \mathrm{kN} / \mathrm{m}-0.87 \mathrm{kN} / \mathrm{m}=0.54 \mathrm{kN} / \mathrm{m}$

Bending moment on 3.66 m wide pool
$M^{*}=0.54 \times 3.66^{2} / 8=0.90 \mathrm{kN} . \mathrm{m}$

Capacity of $90 \times 48 \times 2.9$ Channel, grade 300
$\Theta \mathrm{M}_{\mathrm{b}}=14.9 \times 300 \times 0.9=4.023 \mathrm{kN} . \mathrm{m} 0.9 \mathrm{kN} . \mathrm{m}$
. . Accept



[^0]:    Job: Z: Structerre\Job ... 1100653 - DRICLAD MASTER DOCUMENTSishallow 5500 wide
    Units - Len: m, Sec: mm, Mat: MPa, Dens: T/m³, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa
    Scales - Frame: 1:45, Load: None, Disp: 16.78467, Moment None, Shear: None, Axial: None, Torsion: None

[^1]:    Job: Unnamed
    Units - Len: m, Sec: mm, Mat MPa, Dens: T/m³, Temp: Celsius, Force: kN, Mom: kNm, Mass: T, Acc: g's, Trans: mm, Stress: MPa Scales - Frame: 1:45, Load: None, Disp: 16.78467, Moment: None, Shear; None, Axial: None, Torsion: None

