Building Act 1993

Section 238(1)(a)

Building Regulations 2018

Regulation 126

CERTIFICATE OF COMPLIANCE FOR PROPOSED BUILDING WORK

This certificate is issued to Edco	International Trading Corporation
Postal address:	
	Postcode

This certificate is issued in relation to the proposed building work at:

Various in the state Postcode

Nature of proposed building work

Construction of a *Gazebo (3.62x3.30x2.78)

*Storeys contained: 1

*Rise in storeys (for Class 2-9 building only):1

Version of BCA applicable to certificate: NCC Volume One 2019

AS1170, AS4100, AS/NZS1170.0, AS/NZS1170.1, AS/NZS1170.2, AS1720.1, AS1664

Building classification

Part of building: Gazebo Class 10a

Prescribed class of building work for which this certificate is issued: Structural Matter

Design or part of the design of building work relating to *Structural matter/*Sewage matter/*Water matter/* Drainage matter/*Mechanical (including hydraulic services within a building) matter/*Electrical matter/*Fire safety matter

Documents setting out the design that is certified by this certificate

Documen t no.	Document date	Type of document (e.g. drawings, computations, specifications, calculations etc.)	Number of pages	Prepare d by
1	15-12-2021	STRUCTURAL DESIGN CALCULATIONS FOR Mullaloo Timber Look Gazebo (3.62x3.30x2.78) 15- 12-2021	29	OPS

The design certified by this certificate complies with the following provisions of Building Act 1993, Building Regulations 2018 or National Construction Code

Act, Regulation or NCC	Section, Regulation, Part, Performance Requirement or other provision
NCC 2019 Volume 1,	Section B – Part B1 Structural provisions

^{*}I prepared the design, or part of the design, set out in the documents listed above.

I certify that the design set out in the documents listed above complies with the provisions set out above.

I believe that I hold the required skills, experience and knowledge to issue this certificate and can demonstrate this if requested to do so.

Name: SALMAN AMJAD

Address: UNIT 157 / 61 KARALTA ROAD ERINA

Email: info@oprojectservices.com

Endorsed Building Engineer Area of Engineering: Civil Endorsed Building Engineer Registration No. PE0000901

Date of issue of certificate: 15/12/2021

Signature:

STRUCTURAL DESIGN CALCULATIONS

MIMOSA GAZEBO DESIGN (3.62 x 3.30m)

MULLALOO TIMBER LOOK GAZEBO

PREPARED BY: Engr. Salman Amjad

1. 3D VIEW OF ANALYSIS MODEL

2. INPUT PARAMETERS

2.1. DESIGN LOADINGS & LOAD COMBINATIONS

Following floor loadings have considered for design;

Dead Loadings: Self-weight of Elements

Wind Loadings: (Refer to below Wind Calculations)

Load Combinations: Dead Load

Dead Load + Wind Load

1.35 x Dead Load

1.20 x Dead Load + 1.0 x Wind Load

2.2. MATERIAL STRENGTH

Following material strength have considered for design;

Material Properties of: Alloy 6063-T5

Compressive Yield Strength, $f_{cy} = 110 \text{ MPa}$

Tensile Yield Strength, $f_{ty} = 110 \text{ MPa}$

Tensile Ultimate Strength, $f_{tu} = 152 \text{ MPa}$

Shear Ultimate Strength, $f_{su} = 90 \text{ MPa}$

Refer to AS1664.1 table 3.3A

Design Code: AS1664

2.3. APPLIED LOADING

	Job No:		Sheet:	
OMEGA PROJECT	Job Title:	GAZEBO DESIGN	Rev:	0
SERVICES	·	ND DDESCHDE CALCHI ATION		-
	Subject: WI	ND PRESSURE CALCULATION		
Professional - Committed - Reliable			Made By:	AA
	Client: Mulla	lloo Timber Look Gazebo	Checked By:	SA
			Date:	2/12/2021
	De	sign Calculation sheet		
WIND PRE		CALCULATION	IS	

Job No:		Sheet:	
Job Title:	GAZEBO DESIGN	Rev:	0

Subject: WIND PRESSURE CALCULATION

Client: Mullaloo Timber Look Gazebo

Made By: AA
Checked By: SA
Date: 2/12/2021

Design Calculation sheet

WIND PRESSURE CALCULATION AS PER AS1170

Design Wind Pressure= $p = (0.5 \rho_{air}) [V_{des,\theta}]^2 C_{fig} C_{dyn}$

Design Forces on Surface= $F = \sum (p_z A_z)$

where

 $p_z={
m design}$ wind pressure in pascals (normal to the surface) at height z, calculated in Clause 2.4.1

NOTE: The sign convention for pressures leads to forces towards the surface for positive pressures and forces away from the surface for negative pressures.

 A_z = a reference area, in square metres, at height z, upon which the pressure at that height (p_z) acts

REGIONAL WIND SPEED

TABLE 3.1 REGIONAL WIND SPEEDS

	Region						
Regional wind speed (m/s)		Non-cyclonic		Cyc	lonic		
specu (m.s)	A (1 to 7)	W	В	C	D		
V_1	30	34	26	23× Fc	23× F _D		
V_5	32	39	28	33× Fc	35× F _D		
V_{10}	34	41	33	39× Fc	43× F _D		
$\nu_{\scriptscriptstyle 20}$	37	43	38	45× F c	51× F _D		
V_{25}	37	43	39	47× Fc	53× F □		
V_{50}	39	45	44	52 × Fc	$60 \times F_{D}$		
V100	41	47	48	56 × Fc	$66 \times F_{D}$		
V200	43	49	52	61 × F _C	$72 \times F_D$		
V ₂₅₀	43	49	53	62 × Fc	$74 \times F_D$		
V ₅₀₀	45	51	57	66 × Fc	80 × Fp		
V_{1000}	46	53	60	70 × F _C	$85 \times F_{D}$		
V_{2000}	48	54	63	73 × F _C	$90 \times F_D$		
V_{2500}	48	55	64	74 × Fc	$91 \times F_{D}$		
V_{5000}	50	56	67	78 × Fc	95 × F _D		
V_{10000}	51	58	69	81 × Fc	99 × F _D		
V_R ($R \ge 5$ years)	67-41R-0.1	104-70R-0.045	106-92R-0.1	Fc (122-104R-0.1)	FD (156-142R-0.1		

V100 = 48.0 m/s Design Wind Speed V25 = 39.0 m/s Serviceiability Wind Speed

Job No:		Sheet:	
Job Title:	GAZEBO DESIGN	Rev:	0

Subject: WIND PRESSURE CALCULATION

Client: Mullaloo Timber Look Gazebo

Made By: AA
Checked By: SA
Date: 2/12/2021

Design Calculation sheet

WIND PRESSURE CALCULATION AS PER AS1170

DESIGN WIND SPEED

Co	onstants	
Density of air	1.2	kg/m^3
Location	& Hazard	Design
Region Site Exposure Classification	В	Non-cyclonic
Average Recurrence Interval, R	100	years
Terrain category (TC)	1.00	
Probability of exceedance, P=1/R	0.01	
Regional wind speed, V_R	48.0	m/s
Site wind speed, V_site,β	48.0	m/s
Design wind speed, V_des,⊖	48.0	m/s
Wind Sp	eed Mult	ipliers
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.00	(Likely possible)
Wind direction multiplier, M_d	0.99	(Largest possible)
Terrain/height multiplier, M_z,cat	1.00	
Shielding multiplier, M_s	1.00	
Terrain multiplier, M_t	1.00	

SERVICEIABILITY WIND SPEED

Co	nstants				
Density of air	1.2	kg/m^3			
Location 8	k Hazard	Design			
Region Site Exposure Classification	Non-cyclonic				
Average Recurrence Interval, R	100	years			
Terrain category (TC)	1.00				
Probability of exceedance, P=1/R	0.01				
Regional wind speed, V_R	39.0	m/s			
Site wind speed, V_site,β	39.0	m/s			
Design wind speed, V_des,⊖	39.0	m/s			
Wind Spe	ed Multi	ipliers			
Wind direction multiplier M. d	1.00	(Likely possible)			
Wind direction multiplier, M_d	0.99	(Largest possible)			
Terrain/height multiplier, M_z,cat	1.00				
Shielding multiplier, M_s	1.00				
Terrain multiplier, M_t	1.00				

Job No:		Sheet:	
Job Title:	GAZEBO DESIGN	Rev:	0

Subject: WIND PRESSURE CALCULATION

Client: Mullaloo Timber Look Gazebo

Made By: AA
Checked By: SA
Date: 2/12/2021

Design Calculation sheet

WIND PRESSURE CALCULATION AS PER AS1170

WIND DIRECTIONALITY MULTIPLIER, Md

TABLE 3.2 WIND DIRECTION MULTIPLIER (M_d)

Cardinal directions	Region Al	Region A2	Region A3	Region A4	Region A5	Region A6	Region A7	Region W
N	0.90	0.80	0.85	0.90	1.00	0.85	0.90	1.00
NE	0.80	0.80	0.80	0.85	0.85	0.95	0.90	0.95
E	0.80	0.80	0.80	0.90	0.80	1.00	0.80	0.80
SE	0.80	0.95	0.80	0.90	0.80	0.95	0.90	0.90
s	0.85	0.90	0.80	0.95	0.85	0.85	0.90	1.00
SW	0.95	0.95	0.85	0.95	0.90	0.95	0.90	1.00
W	1.00	1.00	0.90	0.95	1.00	1.00	1.00	0.90
NW	0.95	0.95	1.00	0.90	0.95	0.95	1.00	0.95
Any direction	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Md = 1.00

TERRAIN/HEIGHT MULTIPLIER, Mz,cat

TABLE 4.1 TERRAIN/HEIGHT MULTIPLIERS FOR GUST WIND SPEEDS IN FULLY DEVELOPED TERRAINS—ALL REGIONS

	5 0	Terrain/height :	nultiplier $(M_{\epsilon,cst})$	
Height (z)	Terrain	Terrain	Terrain	Terrain
m	category 1	category 2	category 3	category 4
≤3	0.99	0.91	0.83	0.75
5	1.05	0.91	0.83	0.75
10	1.12	1.00	0.83	0.75
15	1.16	1.05	0.89	0.75
20	1.19	1.08	0.94	0.75
30	1.22	1.12	1.00	0.80
40	1.24	1.16	1.04	0.85
50	1.25	1.18	1.07	0.90
75	1.27	1.22	1.12	0.98
100	1.29	1.24	1.16	1.03
150	1.31	1.27	1.21	1.11
200	1.32	1.29	1.24	1.16

NOTE. For intermediate values of height ε and terrain category, use linear interpolation.

Terrain Catagorey= 1 Height, Z (m)= 3

Mz,cat= 1.00

Job No:		Sheet:	
Job Title:	GAZEBO DESIGN	Rev:	0

Subject: WIND PRESSURE CALCULATION

Client: Mullaloo Timber Look Gazebo

Made By: AA
Checked By: SA
Date: 2/12/2021

Design Calculation sheet

WIND PRESSURE CALCULATION AS PER AS1170

SHIELDING MULTIPLIER, Ms

Ms = 1.00

TOPOGRAPHIC MULTIPLIER, Mt

Mt = 1.00

DYNAMIC RESPONSE FACTOR, Cdyn

Cdyn = 1.00

EXTERNAL PRESSURE COEFFICENT

TABLE D5 NET PRESSURE COEFFICIENTS ($C_{p,n}$) FOR PITCHED FREE ROOFS—0.25 $\leq h/d \leq 1$ (see Figure D3)

Roof pitch (a) degrees	θ = 0°			
	$C_{p,w}$		$C_{\mathrm{p},\ell}$	
	Empty under	Blocked under	Empty under	Blocked under
≤15	-0.3, 0.4	-1.2	-0.4, 0.0	-0.9
22.5	-0.3, 0.6	-0.9	-0.6, 0.0	-1.1
30	-0.3, 0.8	-0.5	-0.7, 0.0	-1.3

FIGURE D3 PITCHED FREE ROOFS

Roof Pressure Coefficent at WW, Cpww = (-0.3, 0.8)

Roof Pressure Coefficent at LW, Cplw = (-0.7, 0.0)

Job No:		Sheet:	
Job Title:	GAZEBO DESIGN	Rev:	0

Subject: WIND PRESSURE CALCULATION

Client: Mullaloo Timber Look Gazebo

Made By: AA
Checked By: SA
Date: 2/12/2021

Design Calculation sheet

WIND PRESSURE CALCULATION AS PER AS1170

AERO-DYNAMIC SHAPE FACTOR, Cfig

$$C_{fig,e} = C_{p,e} K_a K_{c,e} K_l K_p$$

Area Reduction Factor, Ka = 1.

External Combination Factor, Kc,e 1.0

Local Pressure Factor, KI = 1.0

Net Porosity Factor, Kp = 1.0

C_{fig,e} = 1.0

Design Wind Pressure, pu=

Pu =
$$p = (0.5 \rho_{air}) [V_{des,\theta}]^2 C_{fig} C_{dyn}$$

P u= 0.5 x 1.2 x 48² x 1.0 x 1.0 / 1000

Pu = 1.382 kPa

Service Wind Pressure, ps=

Ps =
$$p = (0.5 \rho_{air}) [V_{des,\theta}]^2 C_{fig} C_{dyn}$$

Ps =
$$0.5 \times 1.2 \times 39^2 \times 1.0 \times 1.0 / 1000$$

P s= 0.913 kPa

Job No:		Sheet:	
Job Title:	GAZEBO DESIGN	Rev:	0

Subject: WIND PRESSURE CALCULATION

Client: Mullaloo Timber Look Gazebo

Made By: AA Checked By: SA 2/12/2021 Date:

Design Calculation sheet

WIND PRESSURE CALCULATION AS PER AS1170

Applied Ultimate Wind Pressure, Wu=

Wu, wwroof = 1.382 x - 0.3 = - 0.415 kPa Case-1 Upward Wu, lwroof = 1.382 x - 0.7 = - 0.97 kPa Case-1 Upward Wu, wwroof = $1.382 \times 0.8 = +1.11 \text{ kPa}$ Case-2 Downward Wu, lwroof = $1.382 \times 0.0 = +0.00 \text{ kPa}$ Case-2 Downward **Both Cases Side Wall** Wu, wall = 1.3 x 1.382 = 1.80 kPa

Applied Service Wind Pressure, Ws=

Ws, wwroof = 0.913 x - 0.3 = -0.274 kPaCase-1 Upward Ws, wwroof = $0.913 \times 0.8 = +0.733 \text{ kPa}$ Case-2 Downward Ws, Iwroof = 0.913 x - 0.7 = -0.64 kPaCase-1 Upward Ws, lwroof = $0.913 \times 0.0 = +0.00 \text{ kPa}$ Case-2 Downward Ws, wall = $1.3 \times 0.913 = 1.19 \text{ kPa}$ **Both Cases Side Wall**

Applied Member Loadings

Column Section= 110 x 110 x 1.2 SHS

Main Beam Section= 100 x 30 x 1.2 RHS

Secondary Beam Section= 100 x 30 x 1.2 RHS

a) Applied Ultimate Wind Loadings

Line Loading on Column = 1.80 x 0.110 = 0.20 kN/m

Line Loading on WW side for MB = $0.03 \times -0.415 \times 1.81 = -0.023 \text{ kN/m}$ Case-1 Line Loading on LW side for MB = $0.03 \times -0.97 \times 1.81 = -0.053 \text{ kN/m}$ Case-1 Line Loading on WW side for MB = $0.03 \times 1.11 \times 1.81 = 0.060 \text{ kN/m}$ Case-2 Line Loading on LW side for MB = $0.03 \times 0.00 \times 1.81 = 0.00 \text{ kN/m}$ Case-2

Line Loading on Side Beam = 1.11 x 0.10 = 0.11 kN/m

b) Applied Service Wind Loadings

Line Loading on Column = 1.19 x 0.110 = 0.13 kN/m

Line Loading on WW side for MB = $0.03 \times -0.274 \times 1.81 = -0.015 \text{ kN/m}$ Case-1 Line Loading on LW side for MB = $0.03 \times -0.64 \times 1.81 = -0.034 \text{ kN/m}$ Case-1 Line Loading on WW side for MB = 0.03 x 0.733 x 1.81= 0.039 kN/m Case-2 Line Loading on LW side for MB = $0.03 \times 0.00 \times 1.81 = 0.00 \text{ kN/m}$ Case-2 Line Loading on Side Beam = 0.733 x 0.10 = 0.073 kN/m

Applied Dead Loadings (kN/m)

Ultimate Wind Loadings Applied on Sides (kN/m)

Service Wind Loadings Applied on Sides (kN/m)

Ultimate Uplift Wind Loadings Applied on Roof (kN/m)

Service Uplift Wind Loadings Applied on Roof (kN/m)

Ultimate Downward Wind Loadings Applied on Roof (kN/m)

Service Downward Wind Loadings Applied on Roof (kN/m)

3. CRITICAL ELEMENTS DESIGN

3.1. BEAM DESIGN

Member Size = $100 \times 30 \times 1.2$

Loading Span = 2.95m

Panel Distributary Width = 1.475m

Dead Load = 0.07 kN/m^2

(From Self-weight of $100 \times 30 \times 1.2$)

 $= 0.07 \times 1.475 = 0.105 \text{ kN/m}$

A) DEFLECTION CHECK

Maximum Deflection Value, $\delta = 5.56$ mm

Allowable Deflection Limit = 3620/180 = 20.11mm

Allowable Deflection Limit = L/180

Therefore, member size $(100 \times 30 \times 1.2)$ is adequate.

B) STRENGTH CHECK

MAJOR DIRECTION BENDING MOMENT AND SHEAR FORCE

AXIAL FORCE DIAGRAM

In conclusion, following are the design forces

Ultimate Bending Moment (Major Direction), Mu = 0.496 kN-m

Ultimate Shear Force (Major Direction), Vu = 0.310 kN

Ultimate Axial Force, Pu = 0.22 kN

C) Design Stresses Check

Bending Stress Check

Gross sectional area, Ag $= 306 \text{ mm}^2$

In plane Elastic Section Modulus, Zy = 7233 mm³

Stress from axial force = fa = P/Aq = 220 /306

= 0.719 MPa

Stress from in-plane fby = My/Zy = 0.496x $10^6/7233$

= 68.57 MPa

Compression in beam Eq 3.4.15

Unsupported Length of Member, major = Lmaj = 3.60 m

Unsupported Length of Member, minor = Lmin = 3.60/23 = 0.156m

Effective length factor = k = 1

Radius of gyration about buckling axis $(Y) = r_y = 34.36$ mm

Radius of gyration about buckling axis (z) = rz = 13.27mm

Slenderness ratio = $kLb/r_y = 3620/34.36 = 105.35$

Slenderness ratio = kLb/rz = 156/13.27 = 11.75

Bc = 119.3 MPa REFER AS1664.1 TABLE 3.3D

Dc = 0.492 MPa REFER AS1664.1 TABLE 3.3D

Cc = 99.38 REFER AS1664.1 TABLE 3.3D

S1 = 21.51

S2 = 3857.96

 $J = 152285 \text{ mm}^4$

 $Iy = 54000 \text{ mm}^4$

 $Zc = 9272 \text{ mm}^3$

Lb x Zc/[0.5 x (Iy x J) $^{1/2}$] = 0.67 < S1 Therefore

 $\phi FL = \phi_b \times Fcy$

 $= 0.85 \times 110 = 93.5 \text{ MPa} > 68.57 \text{ MPa}$

Utilization Ratio = 68.57 / 93.5 = 0.733

Shear Stress Check

Clear depth = h = 100mm

Thickness = t = 1.2mm

h/t = 100/1.2 = 83.330

Bs = 72.83 REFER AS1664.1 TABLE 3.3

Ds = 0.232 REFER AS1664.1 TABLE 3.3

Cs = 128.47 REFER AS1664.1 TABLE 3.3

S1 =33.31 REFER AS1664.1 TABLE 3.3

 $\phi FL = \phi y Fsy = 0.95 \times 62 = 58.9 \text{ MPa}$

Shear Stress, $v_u = 310 / (100 \times 1.2 \times 2) = 1.29 \text{ MPa}$

As Shear Stress, $vu < \phi FL$ Therefore, the provided section is adequate.

3.2. COLUMN DESIGN

Member Size = $110 \times 110 \times 1.2$

Member Span = 2.050 m

Design Forces

Ultimate Bending Moment (Major Direction), Mu = 0.495 kN-m

Ultimate Shear Force (Major Direction), Vu = 0.45 kN

Ultimate Axial Force, Pu = 0.64 kN

BENDING MOMENT DIAGRAM

SHEAR FORCE DIAGRAM

Bending Stress Check

Gross sectional area, Ag = 522 mm^2

In plane Elastic Section Modulus, Zy = 18735 mm³

Stress from axial force = fa = P/Ag = 640 /522

= 1.225 MPa

Stress from in-plane fby = My/Zy = $0.51x \cdot 10^6/18735$

= 26.42 MPa

Compression in beam Eq 3.4.15

Unsupported Length of Member, major = Lmaj = 2.050 m

Unsupported Length of Member, minor = Lmin = 2.050m

Effective length factor = k = 1

Radius of gyration about buckling axis $(Y) = r_y = 44.42$ mm

Radius of gyration about buckling axis (z) = rz = 44.42mm

Slenderness ratio = $kLb/r_v = 2050/44.42 = 46.15$

Slenderness ratio = kLb/rz = 2050/44.42 = 46.15

Bc = 119.3 MPa REFER AS1664.1 TABLE 3.3D

Dc = 0.492 MPa REFER AS1664.1 TABLE 3.3D

Cc = 99.38 REFER AS1664.1 TABLE 3.3D

S1 = 21.51

S2 = 3857.96

J = 1545496 mm⁴

 $Iy = 1030456 \text{ mm}^4$

 $Zc = 21308 \text{ mm}^3$

Lb x Zc/[0.5 x (Iy x J) $^{1/2}$] = S2 > 72.80 > S1 Therefore

 $\phi FL = \phi_b \times Fcy$

 $\phi FL = \phi b \times (Bc - 1.6Dc \times (Lb \times Zc/0.5 \times (Iy \times J)^{1/2})$

 $\phi FL = 0.85 \times 61.4 = 52.18 \text{ MPa}$

Total Stresses = 1.225 + 26.42 = 27.65 MPa < 52.18 MPa

Therefore, the provided section is adequate.

Shear Stress Check

Clear depth = h = 110mm

Thickness = t = 1.2mm

h/t = 110/1.2 = 91.70

Bs = 75.83 REFER AS1664.1 TABLE 3.3

Ds = 0.242 REFER AS1664.1 TABLE 3.3

Cs = 128.47 REFER AS1664.1 TABLE 3.3

S1 =34.31 REFER AS1664.1 TABLE 3.3

 $\phi FL = \phi y Fsy = 0.95 \times 62 = 58.9 \text{ MPa}$

Shear Stress, $v_u = 640 / (110 \times 1.2 \times 2) = 2.42 \text{ MPa}$

As Shear Stress, $vu < \phi FL$ Therefore, the provided section is adequate.

3.3. UTILIZATION RATIO FROM THE SOFTWARE

