CLR Grease & Oil Remover (AUS) Sabrands Australia Management Ptv I t

Sabrands Australia Management Pty Ltd

Version No: 3.1
Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: 4

Issue Date: **04/05/2023** Print Date: **04/05/2023** L.GHS.AUS.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier		
Product name	CLR Grease & Oil Remover (AUS)	
Chemical Name	Not Applicable	
Synonyms	Not Available	
Proper shipping name	CORROSIVE LIQUID, BASIC, INORGANIC, N.O.S. (contains potassium hydroxide)	
Chemical formula	Not Applicable	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Household cleaner
Relevant identified uses	Use according to manufacturer's directions

Details of the manufacturer or supplier of the safety data sheet

Registered company name	Sabrands Australia Management Pty Ltd	
Address	121 Cecil Street South Melbourne VIC 3205 Australia	
Telephone	1800 667 765 +61 3 9608 8700	
Fax	Not Available	
Website	Not Available	
Email	Not Available	

Emergency telephone number

Association / Organisation	Sabrands Australia Management Pty Ltd	
Emergency telephone numbers	1800 667 765	
Other emergency telephone numbers	Not Available	

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	Not Applicable
Classification ^[1]	Skin Corrosion/Irritation Category 1A, Serious Eye Damage/Eye Irritation Category 1, Hazardous to the Aquatic Environment Acute Hazard Category 2
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Signal word

Dangei

Hazard statement(s)

H314	Causes severe skin burns and eye damage.
H401	Toxic to aquatic life.

Precautionary statement(s) Prevention

• • • • • • • • • • • • • • • • • • • •		
P260	Do not breathe mist/vapours/spray.	
P264	Wash all exposed external body areas thoroughly after handling.	
P280	P280 Wear protective gloves, protective clothing, eye protection and face protection.	
P273	Avoid release to the environment.	

Chemwatch: 5564-04 Page 2 of 16 Version No: 3.1

CLR Grease & Oil Remover (AUS)

Issue Date: 04/05/2023 Print Date: 04/05/2023

Precautionary statement(s) Response

P301+P330+P331	IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.	
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P310	Immediately call a POISON CENTER/doctor/physician/first aider.	
P363	Wash contaminated clothing before reuse.	
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.	

Precautionary statement(s) Storage

P405 Store locked up.

Precautionary statement(s) Disposal

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight] Name		
68131-39-5	1-10	alcohols C12-15 ethoxylated	
6834-92-0	1-5	sodium metasilicate, anhydrous	
Not Available	1-5	sodium xylene sulfonate 40%	
1310-58-3		potassium hydroxide	
Not Available	Balance	lalance Ingredients determined not to be hazardous	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available		

SECTION 4 First aid measures

Description	of	first	aid	measures
-------------	----	-------	-----	----------

Dood iption of mot ala moadar	~
Eye Contact	If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719)
Ingestion	 For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.

• Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

For acute or short-term repeated exposures to highly alkaline materials:

- Respiratory stress is uncommon but present occasionally because of soft tissue edema.
- ▶ Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary.

► Transport to hospital or doctor without delay.

Oxygen is given as indicated.

CLR Grease & Oil Remover (AUS)

Issue Date: 04/05/2023 Print Date: 04/05/2023

- The presence of shock suggests perforation and mandates an intravenous line and fluid administration.
 Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue. Alkalis continue to cause damage after exposure.

INGESTION:

Milk and water are the preferred diluents

No more than 2 glasses of water should be given to an adult.

- Neutralising agents should never be given since exothermic heat reaction may compound injury.
- * Catharsis and emesis are absolutely contra-indicated.
- * Activated charcoal does not absorb alkali.
- * Gastric lavage should not be used.

- Supportive care involves the following: Withhold oral feedings initially.
 - ▶ If endoscopy confirms transmucosal injury start steroids only within the first 48 hours.
- ▶ Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention.
- Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia).

SKIN AND EYE:

Injury should be irrigated for 20-30 minutes.

Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology]

SECTION 5 Firefighting measures

Extinguishing media

- Water spray or fog.
- Foam.
- Dry chemical powder.
- ► BCF (where regulations permit).
- Carbon dioxide.

Choolal hazarda arigina from the authotrate or mixture

Special hazards arising from the substrate or mixture		
Fire Incompatibility	None known.	
Advice for firefighters		
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use fire fighting procedures suitable for surrounding area. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. 	
Fire/Explosion Hazard	 Non combustible. Not considered a significant fire risk, however containers may burn. May emit corrosive fumes. 	
HAZCHEM	2X	

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for conta	inment and cl	eaning u	o					
Minor Spills	 Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material. Check regularly for spills and leaks. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. 							
	Chemical Class For release ont SORBENT TYPE LAND SPILL -	RANK	APPLICA	TION	COLLE	ECTION	LIMITATIONS	
Major Spills	cross-linked			1	shovel	shovel		
Major Spilis	sorbent clay	. , .		2	shovel	shovel		
	foamed glass	•		2	throw	pitchforl		
	expanded mi	nerals - pa	rticulate	3	shovel	shovel	R, I, W, P, DGC	
	foamed glass	s - particula	ite	4	shovel	shovel	R, W, P, DGC,	
	LAND SPILL - MEDIUM							

Page 4 of 16 Issue Date: 04/05/2023 Chemwatch: 5564-04 Version No: 3.1 Print Date: 04/05/2023

CLR Grease & Oil Remover (AUS)

cross-linked polymer -particulate	1	blower	skiploader	R,W, SS
sorbent clay - particulate	2	blower	skiploader	R, I, P
expanded mineral - particulate	3	blower	skiploader	R, I,W, P, DGC
cross-linked polymer - pillow	3	throw	skiploader	R, DGC, RT
foamed glass - particulate	4	blower	skiploader	R, W, P, DGC
foamed glass - pillow	4	throw	skiploader	R, P, DGC., RT

Legend

DGC: Not effective where ground cover is dense

R; Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- ▶ Neutralise/decontaminate residue (see Section 13 for specific agent).
- Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling ▶ DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material. Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. Safe handling When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Other information Protect containers against physical damage and check regularly for leaks. ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. DO NOT store near acids, or oxidising agents ▶ No smoking, naked lights, heat or ignition sources

Conditions for safe storage, including any incompatibilities Drums, Bulk Lined metal can, lined metal pail/ can. Plastic pail. Polyliner drum. Packing as recommended by manufacturer. Check all containers are clearly labelled and free from leaks. For low viscosity materials ► Drums and jerricans must be of the non-removable head type. Where a can is to be used as an inner package, the can must have a screwed enclosure. Suitable container For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.): Removable head packaging; Cans with friction closures and low pressure tubes and cartridges may be used. Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not

Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. Storage incompatibility

incompatible with the plastic.

Avoid contact with copper, aluminium and their alloys.

Issue Date: 04/05/2023 Print Date: 04/05/2023

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	potassium hydroxide	Potassium hydroxide	Not Available	Not Available	2 mg/m3	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
sodium metasilicate, anhydrous	3.8 mg/m3	42 mg/m3	250 mg/m3
potassium hydroxide	0.18 mg/m3	2 mg/m3	54 mg/m3

Ingredient	Original IDLH	Revised IDLH
alcohols C12-15 ethoxylated	Not Available	Not Available
sodium metasilicate, anhydrous	Not Available	Not Available
sodium xylene sulfonate 40%	Not Available	Not Available
potassium hydroxide	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
alcohols C12-15 ethoxylated	E	≤ 0.1 ppm
sodium metasilicate, anhydrous	E	≤ 0.01 mg/m³
sodium xylene sulfonate 40%	E	≤ 0.1 ppm
Notes:	Occupational exposure banding is a process of assigning chemicals into a diverse health outcomes associated with exposure. The output of this process of exposure concentrations that are expected to protect worker here.	ocess is an occupational exposure band (OEB), which corresponds to a

MATERIAL DATA

for potassium hydroxide:

The TLV-TWA is protective against respiratory tract irritation produced at higher concentrations

Exposed individuals are NOT reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded.

Odour Safety Factor (OSF) is determined to fall into either Class C, D or E.

The Odour Safety Factor (OSF) is defined as:

OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm

Classification into classes follows:

ClassOSF Description

- Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when distracted by working activities
- 26-550 As "A" for 50-90% of persons being distracted
- 1-26 As "A" for less than 50% of persons being distracted
- D 0.18-1 10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached
- <0.18 As "D" for less than 10% of persons aware of being tested

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range Upper end of the range Chemwatch: **5564-04**Page **6** of **16**Issue Date: **04/05/2023**Version No: **3.1**Print Date: **04/05/2023**Print Date: **04/05/2023**

CLR Grease & Oil Remover (AUS)

1: Room air currents minimal or favourable to capture
2: Contaminants of low toxicity or of nuisance value only.
3: Intermittent, low production.
4: Large hood or large air mass in motion
4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective equipment

Eye and face protection

- Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure.
- ▶ Chemical goggles.whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted.
- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
- Alternatively a gas mask may replace splash goggles and face shields.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- ► Elbow length PVC gloves
- When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

• When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240

- minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

 When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN
- 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
 Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

Hands/feet protection

See Other protection below

Other protection

- Overalls.PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Finsure there is ready access to a safety shower.

Recommended material(s) GLOVE SELECTION INDEX

CLR Grease & Oil Remover (AUS)

Issue Date: **04/05/2023**Print Date: **04/05/2023**

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

CLR Grease & Oil Remover (AUS)

Material	СРІ
BUTYL	A
NEOPRENE	Α
VITON	A
NATURAL RUBBER	С
PVA	С

^{*} CPI - Chemwatch Performance Index

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	A-AUS / Class1 P2	-
up to 50	1000	-	A-AUS / Class 1 P2
up to 50	5000	Airline *	-
up to 100	5000	-	A-2 P2
up to 100	10000	-	A-3 P2
100+			Airline**

* - Continuous Flow ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Annormation on basic physical o	· ·	issible with water Calauriasa						
Appearance	Colouriess, Clear liquid with weak chemical odour; m	Colourless, Clear liquid with Weak chemical odour; miscible with water. Colourless						
Physical state	Liquid	Relative density (Water = 1)	Not Available					
Odour	Slight	Partition coefficient n-octanol / water	Not Available					
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available					
pH (as supplied)	12.4-13.0	Decomposition temperature (°C)	Not Available					
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available					
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable					
Flash point (°C)	Not Applicable	Taste	Not Available					
Evaporation rate	Not Available	Explosive properties	Not Available					
Flammability	Not Applicable	Oxidising properties	Not Available					
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Available					
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Available					
Vapour pressure (kPa)	Not Available	Gas group	Not Available					
Solubility in water	Miscible	pH as a solution (1%)	Not Available					
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available					

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

Chemwatch: 5564-04 Page 8 of 16

Version No: 3.1

CLR Grease & Oil Remover (AUS)

Page 8 of 16 Issue Date: 04/05/2023
Print Date: 04/05/2023

Inhalation of alkaline corrosives may produce irritation of the respiratory tract with coughing, choking, pain and mucous membrane damage. Pulmonary oedema may develop in more severe cases; this may be immediate or in most cases following a latent period of 5-72 hours Symptoms may include a tightness in the chest, dyspnoea, frothy sputum, cyanosis and dizziness. Findings may include hypotension, a weak and rapid pulse and moist rales. Not normally a hazard due to non-volatile nature of product Ingestion of alkaline corrosives may produce immediate pain, and circumoral burns. Mucous membrane corrosive damage is characterised by a white appearance and soapy feel; this may then become brown, oedematous and ulcerated. Profuse salivation with an inability to swallow or speak may also result. Even where there is limited or no evidence of chemical burns, both the oesophagus and stomach may experience a burning pain; vomiting and diarrhoea may follow. The vomitus may be thick and may be slimy (mucous) and may eventually contain blood and shreds of mucosa. Epiglottal oedema may result in respiratory distress and asphyxia. Marked hypotension is symptomatic of shock; a weak and rapid pulse, shallow respiration and clammy skin may also be evident. Circulatory collapse may occur and, if uncorrected, may produce renal Ingestion failure. Severe exposures may result in oesophageal or gastric perforation accompanied by mediastinitis, substernal pain, peritonitis, abdominal rigidity and fever. Although oesophageal, gastric or pyloric stricture may be evident initially, these may occur after weeks or even months and years. Death may be quick and results from asphyxia, circulatory collapse or aspiration of even minute amounts. Death may also be delayed as a result of perforation, pneumonia or the effects of stricture formation. Accidental ingestion of the material may be damaging to the health of the individual. The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion. The material can produce severe chemical burns following direct contact with the skin. Skin contact with alkaline corrosives may produce severe pain and burns; brownish stains may develop. The corroded area may be soft, gelatinous and necrotic; tissue destruction may be deep. Skin Contact Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. Direct contact with alkaline corrosives may produce pain and burns. Oedema, destruction of the epithelium, corneal opacification and iritis may occur. In less severe cases these symptoms tend to resolve. In severe injuries the full extent of the damage may not be immediately apparent Eye with late complications comprising a persistent oedema, vascularisation and corneal scarring, permanent opacity, staphyloma, cataract, symblepharon and loss of sight. The material can produce severe chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis. Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Chronic Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There exists limited evidence that shows that skin contact with the material is capable either of inducing a sensitisation reaction in a significant number of individuals, and/or of producing positive response in experimental animals. TOXICITY IRRITATION **CLR Grease & Oil Remover** (AUS) Not Available Not Available TOXICITY IRRITATION Dermal (rabbit) LD50: >2000 mg/kg^[2] Eye: no adverse effect observed (not irritating)[1]Inhalation(Rat) LC50: >1.6 mg/l4h^[1] Eye: SEVERE ' alcohols C12-15 ethoxylated Oral (Rat) LD50: 1600 mg/kg^[2] Skin: no adverse effect observed (not irritating)[1] Skin: slight TOXICITY IRRITATION dermal (rat) LD50: >5000 mg/kg[1] Skin (human): 250 mg/24h SEVERE sodium metasilicate. anhydrous Inhalation(Rat) LC50: >2.06 mg/l4h^[1] Skin (rabbit): 250 mg/24h SEVERE Oral (Rat) LD50: 1153 mg/kg^[2] IRRITATION TOXICITY sodium xylene sulfonate 40% Not Available Not Available TOXICITY IRRITATION Oral (Rat) LD50: 273 mg/kg^[2] Eye (rabbit):1mg/24h rinse-moderate potassium hydroxide Skin (human): 50 mg/24h SEVERE Skin (rabbit): 50 mg/24h SEVERE Leaend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances for alkyl sulfates; alkane sulfonates and alpha-olefin sulfonates Most chemicals of this category are not defined substances, but mixtures of homologues with different alkyl chain lengths. Alpha-olefin sulfonates

CLR Grease & Oil Remover (AUS)

Most chemicals of this category are not defined substances, but mixtures of nomologues with different aikyl chain lengths. Alpha-olefin sulfonates are mixtures of alkene sulfonate and hydroxyl alkane sulfonates with the sulfonate group in the terminal position and the double bond, or hydroxyl group, located at a position in the vicinity of the sulfonate group.

Common physical and/or biological pathways result in structurally similar breakdown products, and are, together with the surfactant properties, responsible for similar environmental behavior and essentially identical hazard profiles with regard to human health.

Acute toxicity: These substances are well absorbed after ingestion; penetration through the skin is however poor. After absorption, these chemicals are distributed mainly to the liver.

Acute oral LD50 values of alkyl sulfates in rats and/or mice were (in mg/kg):

Chemwatch: 5564-04 Page 9 of 16 Issue Date: 04/05/2023 Version No: 3.1

CLR Grease & Oil Remover (AUS)

Print Date: 04/05/2023

C10-: 290-580

C10-16- and C12- 1000-2000

C12-14, C12-15, C12-16, C12-18 and C16-18-; >2000

C14-18, C16-18-; >5000

The clinical signs observed were non-specific (piloerection, lethargy, decreased motor activity and respiratory rate, diarrhoea). At necropsy the major findings were irritation of the gastrointestinal tract and anemia of inner organs.

Based on limited data, the acute oral LD50 values of alkane sulfonates and alpha-olefin sulfonates of comparable chain lengths are assumed to be in the same range.

The counter ion does not appear to influence the toxicity in a substantial way.

Acute dermal LD50 values of alkyl sulfates in rabbits (mg/ kg):

C12-; 200

C12-13 and C10-16-;>500

Apart from moderate to severe skin irritation, clinical signs included tremor, tonic-clonic convulsions, respiratory failure, and body weight loss in the study with the C12- alkyl sulfate and decreased body weights after administration of the C10-16- alkyl sulfates. No data are available for alkane sulfonates but due to a comparable metabolism and effect concentrations in long-term studies effect concentrations are expected to be in the same range as found for alkyl sulfates.

There are no data available for acute inhalation toxicity of alkyl sulfates, alkane sulfonates or alpha-olefin sulfonates.

In skin irritation tests using rabbits (aqueous solutions, OECD TG 404): C8-14 and C8-16 (30%), C12-14 (90%), C14-18 (60%)- corrosive

Under occlusive conditions:

C12, and C12-14 (25%), C12-15-, C13-15 and C15-16 (5-7%) - moderate to strong irritants

Comparative studies investigating skin effects like transepidermal water loss, epidermal electrical conductance, skin swelling, extraction of amino acids and proteins or development of erythema in human volunteers consistently showed a maximum of effects with C12-alkyl sulfate, sodium; this salt is routinely used as a positive internal control giving borderline irritant reactions in skin irritation studies performed on humans. As the most irritant alkyl sulfate it can be concluded that in humans 20% is the threshold concentration for irritative effects of alkyl sulfates in general. No data were available with regard to the skin irritation potential of alkane sulfonates. Based on the similar chemical structure they are assumed to exhibit similar skin irritation properties as alkyl sulfates or alpha-olefin sulfonates of comparable chain lengths.

In eye irritation tests, using rabbits, C12-containing alkyl sulfates (>10% concentration) were severely irritating and produced irreversible corneal effects. With increasing alkyl chain length, the irritating potential decreases, and C16-18 alkyl sulfate sodium, at a concentration of 25%, was only

Concentrated C14-16- alpha-olefin sulfonates were severely irritating, but caused irreversible effects only if applied as undiluted powder. At concentrations below 10% mild to moderate, reversible effects, were found. No data were available for alkane sulfonates

Alkyl sulfates and C14-18 alpha-olefin sulfonates were not skin sensitisers in animal studies. No reliable data were available for alkane sulfonates. Based on the similar chemical structure, no sensitisation is expected.

However anecdotal evidence suggests that sodium lauryl sulfate causes pulmonary sensitisation resulting in hyperactive airway dysfunction and pulmonary allergy accompanied by fatigue, malaise and aching. Significant symptoms of exposure can persist for more than two years and can be activated by a variety of non-specific environmental stimuli such as a exhaust, perfumes and passive smoking.

Absorbed sulfonates are quickly distributed through living systems and are readily excreted. Toxic effects may result from the effects of binding to proteins and the ability of sulfonates to translocate potassium and nitrate (NO3-) ions from cellular to interstitial fluids. Airborne sulfonates may be responsible for respiratory allergies and, in some instances, minor dermal allergies. Repeated skin contact with some sulfonated surfactants has produced sensitisation dermatitis in predisposed individuals

Repeat dose toxicity: After repeated oral application of alkyl sulfates with chain lengths between C12 and C18, the liver was the only target organ for systemic toxicity. Adverse effects on this organ included an increase in liver weight, enlargement of liver cells, and elevated levels of liver enzymes. The LOAEL for liver toxicity (parenchymal hypertrophy and an increase in comparative liver weight) was 230 mg/kg/day (in a 13 week study with C16-18 alkyl sulfate, sodium). The lowest NOAEL in rats was 55 mg/kg/day (in a 13 week study with C12-alkyl sulfate, sodium). C14- and C14-16-alpha-olefin sulfonates produced NOAELs of 100 mg/kg/day (in 6 month- and 2 year studies). A reduction in body weight gain was the only adverse effect identified in these studies.

No data were available with regard to the repeated dose toxicity of alkane sulfonates. Based on the similarity of metabolic pathways between alkane sulfonates, alkyl sulfates and alkyl-olefin sulfonates, the repeated dose toxicity of alkane sulfonates is expected to be similar with NOAEL and LOAEL values in the same range as for alkyl sulfates and alpha-olefin sulfonates, i.e. 100 and 200-250 mg/kg/day, respectively, with the liver as potential target organ.

Genotoxicity: Alkyl sulfates of different chain lengths and with different counter ions were not mutagenic in standard bacterial and mammalian cell systems both in the absence and in the presence of metabolic activation. There was also no indication for a genotoxic potential of alkyl sulfates in various in vivo studies on mice (micronucleus assay, chromosome aberration test, and dominant lethal assay).

alpha-Olefin sulfonates were not mutagenic in the Ames test, and did not induce chromosome aberrations in vitro. No genotoxicity data were available for alkane sulfonates. Based on the overall negative results in the genotoxicity assays with alkyl sulfates and alpha-olefin sulfonates, the absence of structural elements indicating mutagenicity, and the overall database on different types of sulfonates, which were all tested negative in mutagenicity assays, a genotoxic potential of alkane sulfonates is not expected.

Carcinogenicity: Alkyl sulfates were not carcinogenic in feeding studies with male and female Wistar rats fed diets with C12-15 alkyl sulfate sodium for two years (corresponding to doses of up to 1125 mg/kg/day).

alpha-Olefin sulfonates were not carcinogenic in mice and rats after dermal application, and in rats after oral exposure. No carcinogenicity studies were available for the alkane sulfonates

Reproductive toxicity: No indication for adverse effects on reproductive organs was found in various oral studies with different alkyl sulfates. The NOAEL for male fertility was 1000 mg/kg/day for sodium dodecyl sulfate. In a study using alpha-olefin sulfonates in male and female rats, no adverse effects were identified up to 5000 ppm.

Developmental toxicity: In studies with various alkyl sulfates (C12 up to C16-18- alkyl) in rats, rabbits and mice, effects on litter parameters were restricted to doses that caused significant maternal toxicity (anorexia, weight loss, and death).

The principal effects were higher foetal loss and increased incidences of total litter losses. The incidences of malformations and visceral and skeletal anomalies were unaffected apart from a higher incidence of delayed ossification or skeletal variation in mice at > 500 mg/kg bw/day indicative of a delayed development. The lowest reliable NOAEL for maternal toxicity was about 200 mg/kg/day in rats, while the lowest NOAELs in offspring were 250 mg/kg/day in rats and 300 mg/kg/day for mice and rabbits.

For alpha-olefin sulfonates (C14-16-alpha-olefin sulfonate, sodium) the NOAEL was 600 mg/kg/day both for maternal and developmental toxicity. No data were available for the reproductive and developmental toxicity of alkane sulfonates. Based on the available data, the similar toxicokinetic properties and a comparable metabolism of the alkyl sulfates and alkane sulfonates, alkane sulfonates are not considered to be developmental

Although the database for category members with C<12 is limited, the available data are indicating no risk as the substances have comparable

Chemwatch: 5564-04 Page 10 of 16 Issue Date: 04/05/2023

Version No: 3.1 Print Date: 04/05/2023

CLR Grease & Oil Remover (AUS)

toxicokinetic properties and metabolic pathways. In addition, longer-term studies gave no indication for adverse effects on reproductive organs with different alkyl sulfates

The material may produce respiratory tract irritation. Symptoms of pulmonary irritation may include coughing, wheezing, laryngitis, shortness of breath, headache, nausea, and a burning sensation.

Unlike most organs, the lung can respond to a chemical insult or a chemical agent, by first removing or neutralising the irritant and then repairing the damage (inflammation of the lungs may be a consequence).

The repair process (which initially developed to protect mammalian lungs from foreign matter and antigens) may, however, cause further damage to the lungs (fibrosis for example) when activated by hazardous chemicals. Often, this results in an impairment of gas exchange, the primary function of the lungs. Therefore prolonged exposure to respiratory irritants may cause sustained breathing difficulties.

for Tergitol 25-L-9: Neodol 25-9 Neodol 25-7 *Shell Canada ** Huntsman (for Teric 12A9)

Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air.

Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture.

On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing.

Allergic Contact Dermatitis—Formation, Structural Requirements, and Reactivity of Skin Sensitizers.

Ann-Therese Karlberg et al; Chem. Res. Toxicol.2008,21,53-69

Polyethylene glycols (PEGs) have a wide variety of PEG-derived mixtures due to their readily linkable terminal primary hydroxyl groups in combination with many possible compounds and complexes such as ethers, fatty acids, castor oils, amines, propylene glycols, among other derivatives. PEGs and their derivatives are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners.

PEGs and PEG derivatives were generally regulated as safe for use in cosmetics, with the conditions that impurities and by-products, such as ethylene oxides and 1,4-dioxane, which are known carcinogenic materials, should be removed before they are mixed in cosmetic formulations. Most PEGs are commonly available commercially as mixtures of different oligomer sizes in broadly- or narrowly-defined molecular weight (MW) ranges. For instance, PEG-10,000 typically designates a mixture of PEG molecules (n = 195 to 265) having an average MW of 10,000. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), with the three names being chemical synonyms. However, PEGs mainly refer to oligomers and polymers with molecular masses below 20,000 g/mol, while PEOs are polymers with molecular masses above 20,000 g/mol, and POEs are polymers of any molecular mass. Relatively small molecular weight PEGs are produced by the chemical reaction between ethylene oxide and water or ethylene glycol (or other ethylene glycol oligomers), as catalyzed by acidic or basic catalysts. To produce PEO or high-molecular weight PEGs, synthesis is performed by suspension polymerization. It is necessary to hold the growing polymer chain in solution during the course of the poly-condensation process. The reaction is catalyzed by magnesium-, aluminum-, or calcium-organoelement compounds. To prevent coagulation of polymer chains in the solution, chelating additives such as dimethylglyoxime are used Safety Evaluation of Polyethyene Glycol (PEG) Compounds for Cosmetic Use: Toxicol Res 2015; 31:105-136 The Korean Society of Toxicology http://doi.org/10.5487/TR.2015.31.2.105

Human beings have regular contact with alcohol ethoxylates through a variety of industrial and consumer products such as soaps, detergents, and other cleaning products. Exposure to these chemicals can occur through ingestion, inhalation, or contact with the skin or eyes. Studies of acute toxicity show that volumes well above a reasonable intake level would have to occur to produce any toxic response. Moreover, no fatal case of poisoning with alcohol ethoxylates has ever been reported. Multiple studies investigating the acute toxicity of alcohol ethoxylates have shown that the use of these compounds is of low concern in terms of oral and dermal toxicity.

Clinical animal studies indicate these chemicals may produce gastrointestinal irritation such as ulcerations of the stomach, pilo-erection, diarrhea, and lethargy. Similarly, slight to severe irritation of the skin or eye was generated when undiluted alcohol ethoxylates were applied to the skin and eyes of rabbits and rats. The chemical shows no indication of being a genotoxin, carcinogen, or mutagen (HERA 2007). No information was available on levels at which these effects might occur, though toxicity is thought to be substantially lower than that of nonylphenol ethoxylates. Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air.

Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture

On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose allergic contact dermatitis (ACD) to these compounds by patch testing

Overall, alcohol alkoxylates (AAs) are not expected to be systemically toxic, although some short chain ethylene glycol ethers, e.g. methyl and ethyl homologues are of concern for a range of adverse health effects. They include skin and eye irritation, liver and kidney damage, bone marrow and central nervous system (CNS) depression, testicular atrophy, developmental toxicity, and immunotoxicity. For higher propyl and butyl homologues, the toxicity involves haemolysis (anaemia) with secondary effects relating to haemosiderin accumulation in the spleen, liver and kidney, and compensatory haematopoiesis in the bone marrow. Systemic toxicity was shown to decrease with increasing alkyl chain lengths and/or alkoxylation degrees (ECETOC, 2005; US EPA, 2010). The chemicals ethylene glycol hexyl ether (with a longer alkyl chain length, CAS No. 112-25-4) and diethylene glycol butyl ether (with a higher ethoxylation degree, CAS No. 112-34-5) have no evidence of systemic effects including haemolysis.

Commercially available AAs are mixtures of homologues of varying carbon chain lengths and it is possible that some of the chemicals with an average alkyl chain length C >=6 may also contain shorter alkyl chains C <6. It is not practical to quantify the proportion of shorter C <6 chain lengths present in such chemicals, or these shorter chain lengths may not be present at all. The available data suggest a lack of systemic toxicity for the AE chemicals with potential short alkyl chain presence (NICNASa); therefore, the toxicity of the chemicals in this assessment is unlikely to be significantly affected by the presence of shorter chain alkyl groups.

Alcohol ethoxylates are according to CESIO (2000) classified as Irritant or Harmful depending on the number of EO-units:

EO < 5 gives Irritant (Xi) with R38 (Irritating to skin) and R41 (Risk of serious damage to eyes)

EO > 5-15 gives Harmful (Xn) with R22 (Harmful if swallowed) - R38/41

EO > 15-20 gives Harmful (Xn) with R22-41

>20 EO is not classified (CESIO 2000)

Oxo-AE, C13 EO10 and C13 EO15, are Irritating (Xi) with R36/38 (Irritating to eyes and skin).

AE are not included in Annex 1 of the list of dangerous substances of the Council Directive 67/548/EEC

In general, alcohol ethoxylates (AE) are readily absorbed through the skin of guinea pigs and rats and through the gastrointestinal mucosa of rats. AE are quickly eliminated from the body through the urine, faeces, and expired air (CO2). Orally dosed AE was absorbed rapidly and extensively in rats, and more than 75% of the dose was absorbed. When applied to the skin of humans, the doses were absorbed slowly and

ALCOHOLS C12-15 ETHOXYLATED

Issue Date: 04/05/2023 Print Date: 04/05/2023

incompletely (50% absorbed in 72 hours). Half of the absorbed surfactant was excreted promptly in the urine and smaller amounts of AE appeared in the faeces and expired air (CO2). The metabolism of C12 AE vields PEG, carboxylic acids, and CO2 as metabolites. The LD50 values after oral administration to rats range from about 1-15 g/kg body weight indicating a low to moderate acute toxicity.

The ability of nonionic surfactants to cause a swelling of the stratum corneum of guinea pig skin has been studied. The swelling mechanism of the skin involves a combination of ionic binding of the hydrophilic group as well as hydrophobic interactions of the alkyl chain with the substrate. One of the mechanisms of skin irritation caused by surfactants is considered to be denaturation of the proteins of skin. It has also been established that there is a connection between the potential of surfactants to denature protein in vitro and their effect on the skin. Nonionic surfactants do not carry any net charge and, therefore, they can only form hydrophobic bonds with proteins. For this reason, proteins are not deactivated by nonionic surfactants, and proteins with poor solubility are not solubilized by nonionic surfactants. A substantial amount of toxicological data and information in vivo and in vitro demonstrates that there is no evidence for alcohol ethoxylates (AEs) being genotoxic, mutagenic or carcinogenic. No adverse reproductive or developmental effects were observed. The majority of available toxicity studies revealed NOAELs in excess of 100 mg/kg bw/d but the lowest NOAEL for an individual AE was established to be 50 mg/kg bw/day. This value was subsequently considered as a conservative, representative value in the risk assessment of AE. The effects were restricted to changes in organ weights with no histopathological organ changes with the exception of liver hypertrophy (indicative of an adaptive response to metabolism rather than a toxic effect). It is noteworthy that there was practically no difference in the NOAEL in oral studies of 90-day or 2 years of duration in rats. A comparison of the aggregate consumer exposure and the systemic NOAEL (taking into account an oral absorption value of 75%) results in a Margin of Exposure of 5,800. Taking into account the conservatism in the exposure assessment and the assigned systemic NOAEL, this margin of exposure is considered more than adequate to account for the inherent uncertainty and variability of the hazard database and inter and intraspecies extrapolations.

AEs are not contact sensitisers. Neat AE are irritating to eves and skin. The irritation potential of agueous solutions of AEs depends on concentrations. Local dermal effects due to direct or indirect skin contact in certain use scenarios where the products are diluted are not of concern as AEs are not expected to be irritating to the skin at in-use concentrations. Potential irritation of the respiratory tract is not a concern given the very low levels of airborne AE generated as a consequence of spray cleaner aerosols or laundry powder detergent dust.

In summary, the human health risk assessment has demonstrated that the use of AE in household laundry and cleaning detergents is safe and does not cause concern with regard to consumer use.

For high boiling ethylene glycol ethers (typically triethylene- and tetraethylene glycol ethers):

Skin absorption: Available skin absorption data for triethylene glycol ether (TGBE), triethylene glycol methyl ether (TGME), and triethylene glycol ethylene ether (TGEE) suggest that the rate of absorption in skin of these three glycol ethers is 22 to 34 micrograms/cm2/hr, with the methyl ether having the highest permeation constant and the butyl ether having the lowest. The rates of absorption of TGBE, TGEE and TGME are at least 100-fold less than EGME, EGEE, and EGBE, their ethylene glycol monoalkyl ether counterparts, which have absorption rates that range from 214 to 2890 micrograms/ cm2/hr . Therefore, an increase in either the chain length of the alkyl substituent or the number of ethylene glycol moieties appears to lead to a decreased rate of percutaneous absorption. However, since the ratio of the change in values of the ethylene glycol to the diethylene glycol series is larger than that

of the diethylene glycol to triethylene glycol series, the effect of the length of the chain and number of ethylene glycol moieties on absorption diminishes with an increased number of ethylene glycol moieties. Therefore, although tetraethylene glycol methyl; ether (TetraME) and tetraethylene glycol butyl ether (TetraBE) are expected to be less permeable to skin than TGME and TGBE, the differences in permeation between these molecules may only be slight.

Metabolism: The main metabolic pathway for metabolism of ethylene glycol monoalkyl ethers (EGME, EGEE, and EGBE) is oxidation via alcohol and aldehyde dehydrogenases (ALD/ADH) that leads to the formation of an alkoxy acids. Alkoxy acids are the only toxicologically significant metabolites of glycol ethers that have been detected in vivo. The principal metabolite of TGME is believed to be 2-[2-(2methoxyethoxy] acetic acid . Although ethylene glycol, a known kidney toxicant, has been identified as an impurity or a minor metabolite of glycol ethers in animal studies it does not appear to contribute to the toxicity of glycol ethers.

The metabolites of category members are not likely to be metabolized to any large extent to toxic molecules such as ethylene glycol or the mono alkoxy acids because metabolic breakdown of the ether linkages also has to occur

Acute toxicity: Category members generally display low acute toxicity by the oral, inhalation and dermal routes of exposure. Signs of toxicity in animals receiving lethal oral doses of TGBE included loss of righting reflex and flaccid muscle tone, coma, and heavy breathing. Animals administered lethal oral doses of TGEE exhibited lethargy, ataxia, blood in the urogenital area and piloerection before death.

Irritation: The data indicate that the glycol ethers may cause mild to moderate skin irritation. TGEE and TGBE are highly irritating to the eyes. Other category members show low eye irritation.

Repeat dose toxicity: Results of these studies suggest that repeated exposure to moderate to high doses of the glycol ethers in this category is required to produce systemic toxicity

In a 21-day dermal study, TGME, TGEE, and TGBE were administered to rabbits at 1,000 mg/kg/day. Erythema and oedema were observed. In addition, testicular degeneration (scored as trace in severity) was observed in one rabbit given TGEE and one rabbit given TGME. Testicular effects included spermatid giant cells, focal tubular hypospermatogenesis, and increased cytoplasmic vacuolisation. Due to a high incidence of similar spontaneous changes

in normal New Zealand White rabbits , the testicular effects were considered not to be related to treatment . Thus, the NOAELs for TGME, TGEE and TGBE were established at 1000 mg/kg/day. Findings from this report were considered

A 2-week dermal study was conducted in rats administered TGME at doses of 1,000, 2,500, and 4,000 mg/kg/day . In this study, significantlyincreased red blood cells at 4,000 mg/kg/day and significantly-increased urea concentrations in the urine at 2,500 mg/kg/day were observed. A few of the rats given 2,500 or 4,000 mg/kg/day had watery caecal contents and/or

haemolysed blood in the stomach These gross pathologic observations were not associated with any histologic abnormalities in these tissues or alterations in haematologic and clinical chemistry parameters. A few males and females treated with either 1,000 or 2,500 mg/kg/day had a few small scabs or crusts at the test site. These alterations were slight in degree and did not adversely affect the rats

In a 13-week drinking water study, TGME was administered to rats at doses of 400, 1,200, and 4,000 mg/kg/day. Statistically-significant changes in relative liver weight were observed at 1,200 mg/kg/day and higher. Histopathological effects included hepatocellular cytoplasmic vacuolisation (minimal to mild in most animals) and hypertrophy (minimal to mild) in males at all doses and hepatocellular hypertrophy (minimal to mild) in high dose females. These effects were statistically significant at 4,000 mg/kg/day. Cholangiofibrosis was observed in 7/15 high-dose males; this effect was observed in a small number of bile ducts and was of mild severity. Significant, small decreases in total test session motor activity were observed in the high-dose animals, but no other neurological effects were observed. The changes in motor activity were secondary to systemic

Mutagenicity: Mutagenicity studies have been conducted for several category members. All in vitro and in vivo studies were negative at concentrations up to 5,000 micrograms/plate and 5,000 mg/kg, respectively, indicating that the category members are not genotoxic at the concentrations used in these studies. The uniformly negative outcomes of various mutagenicity studies performed on category members lessen the concern for carcinogenicity.

Reproductive toxicity: Although mating studies with either the category members or surrogates have not been performed, several of the repeated dose toxicity tests with the surrogates have included examination of reproductive organs. A lower molecular weight glycol ether, ethylene glycol methyl ether (EGME), has been shown to be a testicular toxicant. In addition, results of repeated dose toxicity tests with TGME clearly show testicular toxicity at an oral dose of 4,000 mg/kg/day four times greater that the limit dose of 1,000 mg/kg/day recommended for repeat dose studies. It should be noted that TGME is 350 times less potent for testicular effects than EGME. TGBE is not associated with testicular toxicity, TetraME is not likely to be metabolised by any large extent to 2-MAA (the toxic metabolite of EGME), and a mixture containing predominantly methylated glycol ethers in the C5-C11 range does not produce testicular toxicity (even when administered intravenously at 1,000 mg/kg/day).

Developmental toxicity: The bulk of the evidence shows that effects on the foetus are not noted in treatments with . 1.000 mg/kg/day during gestation. At 1,250 to 1,650 mg/kg/day TGME (in the rat) and 1,500 mg/kg/day (in the rabbit), the developmental effects observed included

Issue Date: **04/05/2023**Print Date: **04/05/2023**

skeletal variants and decreased body weight gain. The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce **POTASSIUM HYDROXIDE** conjunctivitis. Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent **CLR Grease & Oil Remove** asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible (AUS) & SODIUM airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal METASILICATE, ANHYDROUS lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to & POTASSIUM HYDROXIDE the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This SODIUM METASILICATE, form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis. **ANHYDROUS & POTASSIUM** Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is **HYDROXIDE** unlikely, given the severity of response, but repeated exposures may produce severe ulceration. **Acute Toxicity** Carcinogenicity Skin Irritation/Corrosion Reproductivity V × Serious Eye Damage/Irritation STOT - Single Exposure Respiratory or Skin STOT - Repeated Exposure sensitisation Mutagenicity **Aspiration Hazard**

Legend:

Data either not available or does not fill the criteria for classification
 Data available to make classification

SECTION 12 Ecological information

Γοχicity

Version No: 3.1

01.0	Endpoint	Test Duration (hr)	Species		Value	Source
CLR Grease & Oil Remover (AUS) Not Availa	Not Available	Not Available	Not Available		Not Available	Not Available
	Endpoint	Test Duration (hr)	Species		Value	Source
	NOEC(ECx)	48h	Crustacea		0.056mg/l	2
	LC50	96h	Fish		0.59mg/l	2
	EC50	72h	Algae or other aquatic plants		0.3mg/l	2
	EC50	96h	Algae or other aquatic plants		0.7mg/l	4
	EC50	48h	Crustacea		0.13mg/l	2
	Endpoint	Test Duration (hr)	Species	Valu	e	Source
	EC50(ECx)	48h	Crustacea	22.9	4-49.01mg/l	4
sodium metasilicate, anhydrous	LC50	96h	Fish 180		ng/l	1
aiiiyulous	EC50	72h	Algae or other aquatic plants	207r	ng/l	2
	EC50	48h	Crustacea 22.94-49		4-49.01mg/l	4
	Endpoint	Test Duration (hr)	Species		Value	Source
sodium xylene sulfonate 40%	Not Available	Not Available	Not Available	Not Available	Not Available	
	Endpoint	Test Duration (hr)	Species		Value	Source
potassium hydroxide	LC50	96h	Fish		80mg/l	2
	NOEC(ECx)	24h	Fish		28mg/l	2

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

for alkyl sulfates; alkane sulfonates and alpha-olefin sulfonates:

Environmental fate

 $The \ close \ structural \ similar ities \ result \ in \ physico-chemical \ properties \ and \ environmental \ fate \ characteristic \ which \ follow \ a \ regular \ pattern.$

The most important common structural feature of the category members is the presence of a predominantly linear aliphatic hydrocarbon chain with a polar sulfate or sulfonate group, neutralised with a counter ion (i.e., Na+, K+, NH4+, or an alkanolamine cation).

The hydrophobic hydrocarbon chain (with a length typically between C8 and C18) and the polar sulfate or sulfonate groups confer surfactant properties and enable the commercial use of these substances as anionic surfactants

Page 13 of 16 Issue Date: 04/05/2023

CLR Grease & Oil Remover (AUS) Print Date: 04/05/2023

The structural similarities result in the same mode of ecotoxic action. Within each subcategory the most important parameter influencing ecotoxicity is the varying length of the alkyl chain. Although the counter ion may also influence the physico-chemical behaviour of these chemicals, the chemical reactivity and classification for the purpose of this assessment is not expected to be affected by the difference in counter ion.

As ionic substances, all members of this category have extremely low vapor pressures. Calculated values are in the ranges 10-11 to 10-15 hPa (C8-18 alkyl sulfates), 4.3.10-11 to 9.10-15 hPa (C8-18 alkane sulfonates), 2.1.10-13 to 6.9.10-15 hPa (C14-18 alkene sulfonates) and 3.3.10-17 to 5.8.10-19 hPa (C14-18 hydroxy alkane sulfonates). Therefore, they decompose before reaching their theoretical boiling points.

Measured water solubilities are available only for alkyl sulfates; they are in the range 196 000 mg/l (C12) to 300 mg/l (C16) and by factors of 50 to 300 higher than calculated values (C12: 617 mg/l, C16: 5 mg/l).

As surfactants have a tendency to concentrate at hydrophilic/hydrophobic boundaries rather than to equilibrate between phases log Kow is not a good descriptor of surfactant hydrophobicity and only of limited predictive value for the partitioning of these compounds in the environment.

All calculated physico-chemical properties of surfactants should be treated with caution, because the estimation models do not take into account surfactant properties. In addition, the results are doubtful for ionic substances.

Deduced from physico-chemical and surfactancy properties the target compartment for the substances of this category is the hydrosphere. Based on the ionic structure partitioning into the atmosphere can be excluded. In water, the compounds are stable to hydrolysis under environmental conditions.

Taking into account the low BCF factors (<73) that were determined for (up to) C16-alkyl sulfates, any significant bioaccumulation is not expected.

Soil sorption increases with chain length. Strong sorption on soils would be expected for chain length C14 upwards. Sediment concentrations were between 0.0035 and 0.021 mg/kg dw indicating that accumulation in sediments is low. Under certain conditions of reduced moisture in soil, i.e. in arid or semi-arid regions, accumulation in soil cannot be excluded. The substances of this category are readily biodegradable. Significant biodegradation of alkyl sulfates in the raw sewage, i.e. in the sewer system before reaching the (waste-water treatment plant (WWTPs) is very likely. The substances of this category are quantitatively removed in WWTPs, mainly by biodegradation. Because of the anaerobic degradation of alkyl sulfates in sewage sludge, exposure of agricultural soils due to application of sludge as fertiliser is not expected. However, for alkane sulfonates and alpha-olefin sulfonates this exposure pathway cannot be excluded due to their recalcitrant or limited anaerobic degradability.

For alkyl sulfates: The biological degradation of AS is initiated by a hydrolytic cleavage of the sulfate ester bond catalysed by alkylsulfatases. The cleavage leaves inorganic sulfate and fatty alcohol which undergo oxidation by dehydrogenases to produce fatty acids via fatty aldehydes. The fatty acids are degraded by beta-oxidation and finally totally mineralised or incorporated into biomass. The biological degradation pathway for secondary AS differs from that of the primary AS by the formation of a ketone instead of an aldehyde. The biological degradation of AS is initiated by a hydrolytic cleavage of the sulfate ester bond catalysed by alkylsulfatases. The cleavage leaves inorganic sulfate and fatty alcohol which undergo oxidation by dehydrogenases to produce fatty acids via fatty aldehydes. The fatty acids are degraded by beta-oxidation and finally totally mineralised or incorporated into biomass. The biological degradation pathway for secondary AS differs from that of the primary AS by the formation of a ketone instead of an aldehyde. Biodegradation under anoxic conditions is anticipated to follow the same pathway as for the aerobic degradation.

Primary and secondary AS generally undergo complete primary biodegradation within a few days followed by a rapid ultimate biodegradation. Branched AS are also degraded quite rapidly, but multiple branchings of the alkyl chain considerably reduce the rate and extent of primary biodegradation. There are numerous studies confirming the aerobic biodegradability of AS, and linear primary AS exceeds all other anionic surfactants in the rate of primary and ultimate biodegradation. Also secondary AS are normally readily biodegradable as, e.g., the oxygen uptake from biodegradation of a linear secondary C10-13 AS corresponded to 77% ThOD in 22 days. Some highly branched AS being poorly primary biodegradable may also resist ultimate biodegradation.

Both linear and 2-alkyl-branched primary AS are degraded to a high extent under anaerobic conditions.

AS are generally considered to have a low potential for bioconcentration in aquatic organisms

For alkane sulfonates: Alkane sulfonate anionics (SAS) undergo rapid primary biodegradation with Methylene Blue Active Substance (MBAS) removal higher than 90% within a few days. Removal of 96% were seen in the OECD screening test for primary biodegradation. In activated sludge simulation tests, 96% of C10-18 SAS was removed, while the parent C13-18 SAS was removed by 83-96%.

Alkyl sulfonates are not degraded under anoxic conditions

For alpha-olefin sulfonates: alpha-Olefine sulfonates (AOS) AOS undergo rapid primary biodegradability with methylene blue active substances (MBAS) removal between 95 and 100% in 2 to 8 days in river water and inoculated media. The ultimate biodegradability of AOS exceeds the pass requirements in OECD 301 tests for ready biodegradability. report 85% DOC removal in the modified OECD screening test, 85% ThOD in the closed bottle test, and 65-80% ThCO2 in the Sturm test. In activated sludge simulation tests, AOS was removed by 100% MBAS and 88% DOC. The alkene sulfonates and hydroxyalkane sulfonates in commercial AOS are both ultimately biodegraded as approximately 84% ThCO2 was obtained during degradation of C14, C16, and C18 within 27 days, whereas the corresponding 3-hydroxyalkane sulfonates were degraded by approximately 86% under the same conditions.

AOS are not readily degradable under anaerobic conditions Reports indicate a range of 31% to 43% MBAS removal under anoxic conditions indicating primary biodegradation **Ecotoxicity:**

The aquatic toxicity is influenced by a number of parameters, the length of the alkyl chain being most important. The pH and temperature of water bodies can affect the EC/LC50 values for compounds that contain ammonium ions.

The most sensitive trophic level in tests on the toxicity of alkyl sulfates were invertebrates, followed by fish. Algae proved to be less sensitive. The key study for the aquatic hazard assessment is a chronic test on Ceriodaphnia dubia, which covers a range of the alkyl chain length from C12 to C18. A parabolic response was observed with the C14 chain length being the most toxic (NOEC = 0.045 mg/l).

For alkyl sulfates: Fish LC50 (96 h): fathead minnow - fry 10.2 mg/l; juvenile 17 mg/l; adult 22.5 mg/l; rainbow trout 4.6 mg/l (static)

The aquatic toxicity of AS seems to increase with increasing alkyl chain length. This has been shown for daphnids and for some fish species. An overall comparison of the acute toxicity between the primary and secondary AS shows only minor differences in the toxicity, although only a few studies for comparison are available.

The available data describing the toxicity of AS towards algae indicate that the lowest EC50 values range between 1 and 10 mg/l for C12 AS

The toxicity of AS towards invertebrates has mainly been examined in tests with Daphnia magna. The acute toxicity of AS to Daphnia magna increased with increasing alkyl chain length. It has been shown that during degradation of C12 AS, the toxicity first increased to a maximum after 30 hours and then fell to almost a negligible value. The increase in toxicity was explained by the formation of the more toxic dodecanoic acid which is rapidly transformed to other and less toxic metabolites.

Studies showed that the 24 h-LC50 values for killifish in distilled water decreased by a factor of about 10 when the alkyl chain was increased by two carbon atoms. C16 was 10 times more toxic than C14, which was about 10 times more toxic than C12 AS.

The toxicity of AS to fish has been demonstrated to increase with increasing alkyl chain length as also seen in studies with Daphnia magna. The acute toxicity on Daphnia magna has been determined for chain length C8-C14. Results were comparable to alkyl sulfates in the range between C8 and C10, while C12 and C14 are significantly less toxic. Chronic data obtained for C12 alkane sulfonate sodium and C12-alkyl sulfate sodium with the rotifer *Brachionus calicyflorus* similarly show that alkane sulfonates might be less toxic than alkyl sulfates. C16 and C18 alkane sulfonates are assumed to exhibit the same toxicity than alkyl sulfates of comparable chain lengths. No data are available concerning the toxicity of alkane sulfonates on fish and algae. However, a similar toxicity might be assumed because of structural and physico-chemical similarities between the three subcategories Whereas most correlations between AS structure and toxicity show an increasing toxicity with increasing alkyl chain length, the budding in Hydra attenuata was apparently more affected by C10 AS than by C12, C14, and C16 AS. The authors suggested that the decrease in toxicity with increasing alkyl chain length was attributable to reduced solubility in water

Tests on the toxicity to microorganisms were only conducted with alkyl sulfates as test substances. A test on the inhibition of respiration of activated sludge resulted in an 3 h-EC50 of 135 mg/l (nominally). The lowest effect value for protozoa was obtained from a test on *Uronema parduczi* using C12-alkyl sulfate sodium - the 20 h-EC5 was 0.75 mg/l. Experimental test results on benthic organisms in a water-sediment system are not available. However, due to sediment-water partitioning coefficients Kd < 350, no significant risk for organisms in this compartment is to be expected.

Data indicate that toxic effects on soil organisms might only be expected at high concentrations for alkyl sulfates. Toxicity of alkane sulfonates and alpha-olefin sulfonates can not be assessed because test results for terrestrial organisms are not available.

For alpha-olefin sulfonates, reliable short-term tests on fish, invertebrates and algae are available. The results indicate that toxicity is increasing as the alkyl chain length increases. The lowest available effect value is the 96 h-LC50 = 0.5 mg/l, determined in tests on *Oryzias latipes, Rasbora heteromorpha* and *Salmo trutta*Algae show toxic effects to growth when exposed 10-100 mg/l for C14-18 AOS.

EC50 values for Daphnia magna, showed EC50 values of 16.6 mg/l for C14-18 AOS . Another study with Daphnia magna, showed EC50 values of 16.6 mg/l for C14-16 AOS and 7.7 mg/l for C16-18 AOS.

Studies performed with fish show that the higher homologues of AOS are more toxic than the lower ones. This has been illustrated for different fish species (LC50 (96 h) range 0.5-5.3 mg/l)

For alkane sulfonates: The toxicity of various SAS homologues was determined in tests with Chlamydomonas variabilis. After 24 hours of exposure at 20 C, there was a tendency to an increased toxicity with increasing chain length. The EC50 values were 125 mg/l for C10.3, 74.9 mg/l for C11.2, 32.4 mg/l for C14, 15.8 mg/l for C15, 9.42 mg/l for C16, 3.93 mg/l for C17, 3.71 mg/l for C18.9, and 8.47 mg/l for C20.7.

CLR Grease & Oil Remover (AUS)

Issue Date: **04/05/2023**Print Date: **04/05/2023**

Miljoministeriet (Danish Environmental Protection Agency

Prevent, by any means available, spillage from entering drains or water courses.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients

Bioaccumulative potential

Ingredient	Bioaccumulation	
	No Data available for all ingredients	

Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 Disposal considerations

Waste treatment methods

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- ► Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

Product / Packaging disposal

DO NOT allow wash water from cleaning or process equipment to enter drains

- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ► Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- ▶ Treat and neutralise at an approved treatment plant.
- Treatment should involve: Neutralisation with suitable dilute acid followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 Transport information

Labels Required

Marine Pollutant NO
HAZCHEM 2X

Land transport (ADG)

UN number or ID number	3266		
UN proper shipping name	CORROSIVE LIQUID, BASIC, INORGANIC, N.O.S. (contains potassium hydroxide)		
Transport hazard class(es)	Class 8 Subsidiary risk Not Applicable		
Packing group			
Environmental hazard	Not Applicable		
Special precautions for user	Special provisions 274 Limited quantity 1 L		

Air transport (ICAO-IATA / DGR)

UN number	3266
UN proper shipping name	Corrosive liquid, basic, inorganic, n.o.s. * (contains potassium hydroxide)

Issue Date: **04/05/2023**Print Date: **04/05/2023**

Transport hazard class(es)	ICAO/IATA Class	8	
	ICAO / IATA Subrisk	Not Applicable	
	ERG Code	8L	
Packing group	П		
Environmental hazard	Not Applicable		
Special precautions for user	Special provisions		A3 A803
	Cargo Only Packing Instructions		855
	Cargo Only Maximum Qty / Pack		30 L
	Passenger and Cargo Packing Instructions		851
	Passenger and Cargo Maximum Qty / Pack		1 L
	Passenger and Cargo Limited Quantity Packing Instructions		Y840
	Passenger and Cargo Limited Maximum Qty / Pack		0.5 L

Sea transport (IMDG-Code / GGVSee)

UN number	3266		
UN proper shipping name	CORROSIVE LIQUID, BASIC, INORGANIC, N.O.S. (contains potassium hydroxide)		
Transport hazard class(es)	IMDG Class 8 IMDG Subrisk Not Applicable		
Packing group	II .		
Environmental hazard	Not Applicable		
Special precautions for user	EMS Number F-A, S-B Special provisions 274 Limited Quantities 1 L		

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
alcohols C12-15 ethoxylated	Not Available
sodium metasilicate, anhydrous	Not Available
sodium xylene sulfonate 40%	Not Available
potassium hydroxide	Not Available

Transport in bulk in accordance with the IGC Code

Product name	Ship Type
alcohols C12-15 ethoxylated	Not Available
sodium metasilicate, anhydrous	Not Available
sodium xylene sulfonate 40%	Not Available
potassium hydroxide	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

alcohols C12-15 ethoxylated is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Austra

Australian Inventory of Industrial Chemicals (AIIC)

sodium metasilicate, anhydrous is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

sodium xylene sulfonate 40% is found on the following regulatory lists

Not Applicable

potassium hydroxide is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule ${\bf 5}$

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

National Inventory Status

CLR Grease & Oil Remover (AUS)

Issue Date: **04/05/2023**Print Date: **04/05/2023**

National Inventory	Status		
Australia - AIIC / Australia Non-Industrial Use	Yes		
Canada - DSL	Yes		
Canada - NDSL	No (alcohols C12-15 ethoxylated; sodium metasilicate, anhydrous; potassium hydroxide)		
China - IECSC	Yes		
Europe - EINEC / ELINCS / NLP	Yes		
Japan - ENCS	Yes		
Korea - KECI	Yes		
New Zealand - NZIoC	Yes		
Philippines - PICCS	Yes		
USA - TSCA	Yes		
Taiwan - TCSI	Yes		
Mexico - INSQ	Yes		
Vietnam - NCI	Yes		
Russia - FBEPH	Yes		
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.		

SECTION 16 Other information

Revision Date	04/05/2023
Initial Date	20/09/2022

SDS Version Summary

Version	Date of Update	Sections Updated
3.1	04/05/2023	Physical and chemical properties - Appearance, Hazards identification - Classification, Name

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit $_{\circ}$

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.